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Three cellular automaton models of increasing complexity are introduced to model driven diffusive systems
related to the generalized Frenkel-Kontorova~FK! models recently proposed by Braunet al. @Phys. Rev. E58,
1311~1998!#. The models are defined in terms of parallel updating rules. Simulation results are presented for
these models. The features are qualitatively similar to those models defined previously in terms of sequentially
updating rules. Essential features of the FK model such as phase transitions, jamming due to atoms in the
immobile state, and hysteresis in the relationship between the fraction of atoms in the running state and the bias
field are captured. Formulating in terms of parallel updating rules has the advantage that the models can be
treated analytically by following the time evolution of the occupation on every site of the lattice. Results of this
analytical approach are given for the two simpler models. The steady state properties are found by studying the
stable fixed points of a closed set of dynamical equations obtained within the approximation of retaining spatial
correlations only up to two nearest-neighboring sites. Results are found to be in good agreement with numeri-
cal data.@S1063-651X~99!03807-6#

PACS number~s!: 05.70.Ln, 05.45.2a, 66.30.2h, 05.60.2k
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I. INTRODUCTION

The physics of driven diffusive systems has attrac
much attention recently@1,2# due to their relevance to th
general area of nonequilibrium statistical mechanics
their wide range of possible potential applications. In p
ticular, the Frenkel-Kontorova~FK! model@3,4# and its gen-
eralizations@5–7# have been studied within the context
tribophysics. Braun and co-workers@8–10# studied the
atomic current in one- and two-dimensional atomic syste
in the presence of a periodic potential under the influence
a dc driving force within the approach of Langevin equ
tions. In tribophysics, the driving force emerges owing to
motion of one of the two substrates separated by a
atomic layer. The results of these studies are characterize
two features. One feature is that the system exhibits hys
esis in response to the driving force. The system jumps
tween low-mobility and high-mobility regimes in a hystere
manner as a function of the driving force. Another feature
that accompanying this transition, the atoms tend to orga
themselves into two types of domains consisting of atom
states of different characters, one consisting of slowly m
ing ~‘‘immobile’’ ! atoms and another consisting of ‘‘run
ning’’ atoms moving with maximum speed. The latter fe
ture resembles those in traffic flow models@11–13# in which
cars may be moving at their maximum speed if they are
blocked or may be momentarily stationary if they a
blocked in front.

The models studied in Refs.@8–10# are quite complicated
Attempts have been made@14# to introduce simpler models
which capture the essential features. In a series of three
PRE 601063-651X/99/60~1!/149~10!/$15.00
d

d
-

s
of
-
e
in
by
r-
e-

s
ze
in
-

-

t

at-

tice gas~LG! models of increasing complexity~henceforth
referred to as LG models A, B, and C!, Braun et al. intro-
duced probabilistic hoppings of atoms on a lattice toget
with the possibility of the atoms being found in one of tw
possible states. The underlying model~LG model A! in one
dimension is thatN atoms are placed in a lattice of lengthL
corresponding to a concentration ofr5N/L. The dynamics
is introduced in a random and sequential fashion by r
domly choosing a site at each time step and updating
system according to specific rules. The hopping to
nearest-neighboring sites of an immobile atom in a rando
chosen site is characterized by a probabilitya (12a) that an
atom hops into the site in the right~left! hand side. Thus the
parametera models the effect of a driving force, and th
hoppings to the right and left hand sides correspond to
effects of drift together with diffusion. Atoms in the runnin
state always attempt to hop to the right, which is taken to
the direction of the driving force. Thea51/2 case corre-
sponds to vanishing bias field. Thea51 case corresponds t
the totally asymmetric exclusion model, which has be
solved exactly@15#. An atom in the immobile state change
to the running state if it succeeds in hopping to the right ha
side, while a running atom becomes immobile if the site
the right is occupied by an atom in the immobile state. Su
transitions between the immobile and running states of
atom model the effects of damping. LG model A is th
characterized by the parametersr and a. LG model B in-
cludes the possibility that the running atom at a random
chosen site may change to the immobile state with proba
ity g prior to the motion of the atom takes place. This spo
149 ©1999 The American Physical Society
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taneous convection from the running to the immobile stat
supposed to be more important for weak driving forces.
order to capture the features of hysteresis, Braunet al. @14#
went on to include in the basic model a majority rule in t
conversion between the two states of the atoms. If the
domly chosen site is occupied by the leading atom in a co
pact group ofr running atoms and it is blocked by a compa
group ofs immobile atoms in front, all ther 1s atoms will
turn into the immobile~running! state ifr ,s (r>s). These
three models have the advantage of being easily im
mented numerically by carrying out Monte Carlo simu
tions.

It is useful to study similar models within the context
dynamical systems. A physical consideration is that para
updatings of the states of the atoms may be more approp
than the sequential updatings in the LG models studied
Ref. @14#. In the present work, we propose analogous mod
with parallel updating rules in that all the atoms evolve
every time step according to updating rules, and hence
models become cellular automaton~CA!. We performed nu-
merical simulations on the models. Another advantage
casting the models in terms of parallel updating rules is t
a more systematic analytical approach, analogous to th
successfully applied to traffic flow models@16,17#, may be
applicable. Such an approach focuses on the time evolu
on the state of each of the sites, namely, whether the si
occupied by an atom in the running or immobile state
unoccupied. In general, spatial correlations of gradually
creasing spatial extent are introduced as time evolves. E
tions can be written down relating the state of a site at ti
t11 to quantities at timet. By suitably decoupling the spa
tial correlations, a set of coupled nonlinear equations can
obtained with the fixed point corresponding to the solution
the long-time limit. The complexity of the set of equatio
depends on the extent of spatial correlations retained a
decoupling. The approach has the advantage that it gives
fraction of running atoms in the steady state together w
other spatial correlation functions. As an illustration of t
general idea of the approach, we study models A and B w
parallel updating rules and results are found to be in reas
able agreement with numerical simulations within the a
proximation of retaining correlations up to two sites. T
present work, therefore, complements that of Braunet al.
@14# and suggests an alternative way of studying the vari
models proposed within the context of tribology.

The plan of the paper is as follows. In Sec. II, we defi
the modified models with parallel updating rules and pres
the results obtained by numerical simulations. Section
reports results of our analytical calculations on models A a
B. Results are compared with numerical simulations.
summarize the results in Sec. IV.

II. MODELS AND NUMERICAL RESULTS

A. Model A

We considerN atoms on a one-dimensional lattice ofL
sites with periodic boundary condition. Following the bas
lattice gas model@14#, we modify the rules such that paralle
updating is incorporated. The updating rules are the follo
ing.
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Rule A1.If the i th site on the lattice at timet is occupied
by an immobile atom, it has a probabilitya to be in the
advancing immobile state, i.e., the state that favors forw
biasing and a probability 12a to be in the retreating immo
bile state, i.e., the state that favors backward hopping.
advancing immobile atom can either hop into theempty( i
11)th siteand become a running atomif the (i 12)th site is
not occupied by a retreating atom or be blocked by an at
occupying the (i 11)th site without changing its state, whil
a retreating atom can either hop into theempty( i 21)th site
and stay in the immobile stateif the (i 22)th site is not
occupied by a running or an advancing immobile atom or
blocked by an atom occupying the (i 21)th site without
changing its state.

Rule A2.If the i th site on the lattice at timet is occupied
by a running atom, it can move to theempty( i 11)th site if
the (i 12)th site isnot occupied by a retreating atom or sta
at thei th site and remain in the running state if it is blocke
by a running atom orchange to the immobile stateif it is
blocked by an immobile atom at the (i 11)th site.

Rule A3.If the i th site on the lattice at timet is empty and
is sandwiched between a running or advancing immob
atom at the (i 21)th site and a retreating immobile atom
the (i 11)th site, then the atoms at the two neighboring si
are equally probable to hop into thei th site according to
rules A1 and A2. The atom that fails to hop at that time s
will remain in its original state.

Model A thus represents a modification of the LG mod
A in Ref. @14# with parallel updating rules. The quantity o
interest is the fractionB of atoms in the running state in th
long-time limit. This dimensionless quantity also reflects t
number of sites hopped per atom per time step in the l
time limit. Following Ref.@14#, B is also referred to as the

FIG. 1. The fractionB of atoms in the running state for model A
in the long-time limit as a function of the dimensionless exter
biasing parametera for different values of the concentration o
atomsr. This dimensionless quantity is referred to as the mobil
as it gives the number of sites hopped per atom per time step.
symbols are numerical data, and the solid lines are results obta
by invoking the decoupling scheme in the analytical approach
cussed in the text.
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mobility. We have carried out numerical simulations
model A. Figure 1 shows the dependence of the mobilityB
as a function of the drift parametera for different concen-
trations of atomsr. Note that only the range 1/2,a<1 cor-
responding to a biased field to the right hand side is sho
although the range 0,a,1/2 can also be studied takin
model A as a CA model in its own right. To illustrate th
basic features of the model, we have performed numer
simulations on systems withL51000. Typically, about 2000
time steps are sufficient for approaching the long-time lim
The mobilityB is obtained simply by counting the fraction o
running atoms in the long-time limit. Fora,1, an average
over 50 random initial configurations are performed. Fora
.1/2, B51 for r,0.32. For 0.32,r,1/2, the mobilityB
becomes unity at some critical valueac(r). For r.1/2, the
concentration is sufficiently high so thatB,1 for all values
of a.

The particular point ofa51 deserves further discussio
It is found that forr.1/2, the mobilityB at a51 in the long
time limit depends on the initial condition. The results ata
51 shown in Fig. 1 correspond toB5(12r)/r, which are
obtained by using the initial configuration in which all th
atoms are immobile. For arbitrary initial configurations
a51, B is found to lie within the range (12r)/r<B<1.
Similar results are obtained in our analytical approach, d
cussed in the next section, by treating the model as a
namical system.

B. Model B

Model A forms the basic CA model for further modifica
tions. In particular, while an irreversible transition into th
running state for an isolated atom is strongly favorable in
high-field limit (a'1), it is possible for a running atom t
convert spontaneously to the immobile state in the we
field case. Following the LG model B in Ref.@14#, we intro-
duce the following rule in addition to the rules A1, A2, an
A3 stated above:

Rule B1.Before the updating rules A1, A2, and A3 a
applied in each time step, every atom in the running state
a probabilityg to change its state to the immobile state an
probability 12g to remain in the running state. After thi
consideration, all the atoms on the lattice evolve accordin
the rules A1, A2, and A3.

Rules B1, A1, A2, and A3 define the CA model B. Whi
a tends to lead to a larger fraction of running atom, t
parameterg counteracts the effect and tends to increase
number of atoms in the immobile state. Hence the mobilitB
is generally lower forgÞ0 cases than theg50 case for the
same value ofa. Figure 2 shows the values ofB as a func-
tion of a for different values ofg with the concentration
fixed at r50.4, which corresponds to a concentration
which the atoms are isolated if they are uniformly distribut
on the lattice. Note that the mobilities converge to unity
a51 for different values ofg. Only when g50 will the
mobility becomes unity forac,a<1. The results shown ar
typical for r,1/2. Figure 3 shows the results forr50.6,
which corresponds to a concentration at which there are
ways some atoms with nearest neighbors if they are
formly distributed on the lattice. In this case,B,1 for all
n,
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values of 1/2,a,1 and 0<g<1. The mobilities converge
to the same value for different values ofg at a51. For g
50, model B reduces to model A and the mobilityB lies in
the range (12r)/r<B<1 with the precise value dependin
on the initial condition.

C. Model C

Following the LG model C in Ref.@14#, further modifica-
tions can be made by taking into account the influence of
state of the surrounding atoms on that of a single atom,
the ‘‘crowding effect.’’ The modifications involve the con
siderations of the jamming of a running block of atoms~i.e.,
a compact group of nearest-neighboring atoms in the runn
state! by an immobile block of atoms~i.e., a compact group

FIG. 3. The fractionB of atoms in the running state for model
in the long-time limit as a function of the dimensionless biasi
parametera for different values of the parameterg at fixed concen-
tration r50.6. The symbols are numerical results, and the so
lines are results obtained by invoking the decoupling scheme.
sults are typical of those forr.1/2.

FIG. 2. The fractionB of atoms in the running state for model
in the long-time limit as a function of the dimensionless biasi
parametera for different values of the parameterg at fixed concen-
tration r50.4. The symbols are numerical results, and the so
lines are results obtained by invoking the decoupling scheme.
sults are typical of those forr,1/2.
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of atoms in the immobile state!. If these two adjacent block
of atoms are sandwiched between two empty sites at the
ends, the state ofall the atoms will then follow that of the
larger block. This rule will be referred to as the majority ru
Furthermore, since the spontaneous transition of atoms in
running state to the immobile state should be suppresse
an increasingly stronger forward bias, the parameterg should
be a dependent. We impose the relation@14# g5g0(1
2a)2 on the parameterg, whereg0 is a model parameter
Hence the updating rules for model C can be stated explic
as below.

Rule C1.At a certain time step, if the (i 2r 11)th site to
the i th site is all occupied by running atoms and thei
11)th site to the (i 1s)th site isall occupied by immobile
atoms together with the condition that the (i 2r )th site and
( i 1s11)th site be empty, then in the case ofr>s (r ,s),
all the r 1s atoms become running~immobile!. Immediately
after the changes, the states of the sites are then upd
according to the rules of model B withg5g0(12a)2.

Rule C1 together with model B define the CA model
Figure 4 shows typical results for the mobilityB as a func-
tion of a for different values ofr with g0 taking on a value
close to 0. It is observed that the results look very similar
that of model A except for the presence ofhysteresis, a char-
acteristic feature of the FK model@14#, for r<1/2. The val-
ues ofB obtained by gradually increasinga from a50.5 to
a51 are generally smaller than those obtained by gradu
decreasinga from a51, and the difference between the m
bilities for increasing and decreasing bias fields at a part
lar value ofa increases witha as observed in the LG mode
in Ref. @14#.

The hysteresis, which is absent from models A and
observed forr<1/2 in model C originates from the interac
tions between compact blocks of running atoms and thos
the immobile atoms. To understand qualitatively the orig
of such irreversible behavior, we consider the probability

FIG. 4. The fractionB of atoms in the running state for model
in the long-time limit as a function of the dimensionless bias
parametera for different values of the concentrationr. The param-
eter g0 is taken to be 1025. Results are typical for those withg0

'0. Hysteresis in the mobility is observed forr<1/2.
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finding the configuration in which a compact block ofr run-
ning atoms is immediately followed by a compact block os
immobile atoms with an empty site at both ends. By defi
tion the density of running atoms on the lattice isrB and the
density of immobile atoms isr(12B). The probability of
having a compact block ofr running atoms immediately fol-
lowed by a compact block ofs immobile atoms is thus
@rB(t)# r@r(12B(t))#s, whereB(t) is the fraction of run-
ning atom at a particular instant. Therefore, the probability
finding the desired configuration with an empty site at bo
ends isP5(12r)2r r 1sB(t) r@12B(t)#s. We focus on the
upper branch of the hystersis obtained whena is lowered
from a51. In this case, the system evolves from an init
configuration with B'1, which is attainableonly for r
<1/2 ata51. For values ofB close to unity, the probability
P is larger forr .s than for r ,s. This asymmetry implies
that it is more probable to find blocks with more runnin
atoms than immobile atoms. By rule C1, the asymptotic s
will consist of more running atoms and hence a larger va
of B. Therefore, the asymptotic values ofB are generally
larger if one starts with an initial configuration with a larg
number of running atoms. This sensitivity to the initial co
figurations leads to the hysteresis observed in the fractio
running atoms asa is gradually increased and decreased.

III. ANALYTICAL APPROACH

The CA models with parallel updating rules have the a
vantage that they can be treated analytically within the c
text of dynamical systems. The general idea is to estab
the time evolution equations for the state on each site of
lattice. The equations, in general, involve spatial correlat
functions. With suitable approximations typically involvin
proper decoupling of the correlations, a closed set of
namical equations can be obtained. Such a set of equa
can be treated as a dynamical mapping between quantiti
time t11 and those at timet. Hence, following standard
approaches in dynamical systems, the solution in the lo
time limit can be found by studying the fixed points~attrac-
tors! of the set of equations. Such an approach has b
successfully developed for traffic flow models@16,17# in
which the cars, which are analogous to the atoms in
present models, can only move in one direction witho
backward diffusion movements. To illustrate the idea,
apply the approach to study the modified CA models. It tu
out that for models A and B, reasonably good agreem
with numerical simulations can be obtained by retaining s
tial correlations involving two neighboring sites only. Appl
cation of the method to model C is difficult due to th
built-in long spatial correlations in the majority rule of th
model, and hence results are only reported for models A
B.

A. Model A

Although one can treat model B directly and obtain r
sults of model A by settingg50, it is, however, illustrative
to treat the simpler model A first. We denote the states of
i th site at timet by the following set of Boolean variables:
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Ri~ t !5 H1 if the i th site at time t is occupied by a running atom,
0 otherwise, ~1!

I i~ t !5 H1 if the i th site at time t is occupied by an immobile atom,
0 otherwise, ~2!

Si~ t ![Ri~ t !1I i~ t !5 H1 if the i th site at time t is occupied,
0 otherwise. ~3!
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Obviously, these variables satisfy the relationsh
Ri(t)Ri(t)5Ri(t)Si(t)5Ri(t), I i(t)I i(t)5I i(t)Si(t)5I i(t),
Si(t)Si(t)5Si(t), Ri(t)Ri(t)5I i(t)I i(t)50, and Ri(t)I i(t)
5Ri(t)Si(t)5I i(t)Si(t)50. HereRi(t) represents the con
jugate toRi(t) given byRi(t)512Ri(t), with similar defi-
nitions for Si(t) and I i(t).

In order to represent whether an immobile atom is
vancing or retreatingat a certain time step t, we define a
Boolean variableu i ,t( f ) at thei th site at timet such that

u i ,t~ f !5 H1 with probability f ,
0 with probability ~12 f !. ~4!

Thus the termu i ,t(a)I i(t) represents the probability that th
i th site at timet is occupied by an advancing immobile atom
while the termu i ,t(a)I i(t) represents the probability that th
i th site at timet is occupied by a retreating atom. He
u i ,t(a) denotes the conjugate ofu i ,t(a), i.e., u i ,t(a)[1
2u i ,t(a). It follows that u i ,t(a)u i ,t(a)5u i ,t(a) and
u i ,t(a)u i ,t(a)50. Similarly, in order to represent whether a
advancing or an immobile atom can hop into the empty
sandwiched between the two atoms at a certain time s
another Boolean variableh i ,t( f ) defined exactly the same a
u i ,t( f ) is introduced with f 51/2. With this, the factor
h i ,t(1/2)Ri(t)Si 11(t)@u i 12,t(a)I i 12(t)# represents, for ex-
ample, the probability that the advancing running atom at
i th site can hop successfully into the (i 11)th site at timet.
Note that the two Boolean variablesu i ,t( f ) andh i ,t( f ) are
statistically uncorrelated.

We study the time evolution of the variablesRi(t) and
I i(t), i.e., we seek the variablesRi(t11) andI i(t11) as a
function of quantities at timet. Focusing onRi(t11), there
are various ways in which the situation at timet affects
Ri(t11). From the rules A1 and A2, a running or an a
vancing immobile atom occupying the (i 21)th site at timet
will hop into the emptyi th site if the (i 11)th site is not
occupied by a retreating immobile atom. At the next tim
step, the (i 21)th site will become empty, while thei th site
will be occupied by a running atom. This leads to a con
bution toRi(t11) of the form

@Ri 21~ t !1u i 21,t~a!I i 21~ t !#@Si~ t !#@u i 11,t~a!I i 11~ t !

1Si 11~ t !1Ri 11~ t !#.

The three brackets express the conditions on the (i 21)th,
i th, and (i 11)th sites at timet, respectively. The three term
s

-

e
p,

e

-

in the last set of brackets is equivalent to saying that thei
11)th site is not occupied by a retreating immobile atom
time t.

The second contribution toRi(t11) comes from the situ-
ation in which the (i 11)th site is occupied by a retreating
immobile atom. In this case, rule A3 leads to another pro
bilistic event. This situation contributes a term toRi(t11) of
the form

h i 21,t~
1
2 !@Ri 21~ t !1u i 21,t~a!I i 21~ t !#@Si~ t !#

3@u i 11,t~a!I i 11~ t !#,

which denotes the probability that the atom at the (i 21)th
site succeeded in moving forward into the emptyi th site and

became a running atom. The first factorh i 21,t(
1
2 ) follows

from rule A3 as the atoms at the (i 21)th and (i 11)th sites
are equally probable to hop into thei th site.

Another contribution comes in when thei th site is occu-
pied by a running atom, the (i 11)th site is empty, the (i
12)th site is occupied by a retreating immobile atom,and
that the retreating atom succeeded in hopping back onto
( i 11)th site in the process. In this situation, the runni
atom will stay on thei th site at the next time step. Thi
contributes a term.

h i ,t~
1
2 !@Ri~ t !#@Si 11~ t !#@u i 12,t~a!I i 12~ t !#

to Ri(t11), with the brackets expressing the conditions
the i th, (i 11)th, and (i 11)th sites. A fourth contribution
comes from the situation that a running atom at thei th site is
blocked by another running atom at the (i 11)th site and it
gives a term

Ri~ t !Ri 11~ t !

to Ri(t11) according to rule A2.
Collecting all four contributions toRi(t11), we have

Ri~ t11!5@R1u~a!I # i 21,t@S̄# i ,t@u~a!I 1S̄1R# i 11,t

1@h~ 1
2 !~R1u~a!I !# i 21,t@S̄# i ,t@u~a!I # i 11,t

1@h~ 1
2 !Ri ,t@S̄# i 11,t@u~a!I # i 12,t

1@R# i ,t@R# i 11,t , ~5!

which is a time evolution equation forRi(t11) in that all the
quantities on the right-hand side are evaluated at timet. Note
that we have simplified the notations so that all the quanti
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inside a set of squared brackets are to be evaluated a
position and time indicated as subscripts outside the bra
ets.

A similar argument can be carried out forI i(t11), al-
though the analysis is slightly more complicated than
case ofRi(t11). Rule A1 states that if the (i 21)th site is
not occupied by a running or an advancing immobile ato
then the retreating immobile atom at the (i 11)th site can
hop into the emptyi th site deterministically. This contribute
to I i(t11) a term of the form

@u i 21~ t !I i 21~ t !1Si 21~ t !#@Si~ t !#@u i 11,t~a!I i 11~ t !#,

where the terms in the first set of squared brackets is equ
lent to saying that the (i 21)th site is not occupied by a
running or an advancing immobile atom.

Rule A3 comes into consideration through various sit
tions. If the (i 21)th site is occupied by a running or an
advancing immobile atom, the retreating immobile atom
the (i 11)th site still has half a chance to hop into the emp
i th site and contributes a term

h i 21,t~
1
2 !@Ri 21~ t !1u i 21,t~a!I i 21~ t !#@Si~ t !#

3@u i 11,t~a!I i 11~ t !#

to I i(t11). Note that when anadvancingimmobile atom
fails to hop forward, it will stay at the site and remain im
mobile. In this case, an advancing immobile atom located
the i th site at timet will still be there at timet11 contrib-
uting a term toI i(t11) of the form

@h i ,t~
1
2 !u i ,t~a!I i~ t !#@Si 11~ t !#@u i 12,t~a!I i 12~ t !#.

An analogous situation arises when the running or advan
immobile atom located at the (i 22)th site succeeded in hop
ping into the empty (i 21)th site, leaving a retreating immo
bile atom at thei th site. This contributes a term toI i(t11)
as

h i 22,t~
1
2 !@Ri 22~ t !1u i 22,t~a!I i 22~ t !#@Si 21~ t !#

3@u i ,t~a!I i~ t !#.

Blocking by atoms in the nearest-neighboring sites c
tributes the following terms. If an advancing immobile ato
at thei th site is blocked by the an atom at the (i 11)th site or
a retreating immobile atom is blocked by an atom at thei
21)th site, the state of thei th site at timet11 remains to be
immobile. These two terms inI i(t11) are represented b
@u i ,t(a)I i(t)#Si 11(t)1Si 21(t)@u i ,t(a)I i(t)#. Finally, ac-
cording to rule A2, a termRi(t)I i 11(t) in I i(t11) arises
from the blocking of a running atom by an immobile atom

Collecting all the contributions toI i(t11), we have

I i~ t11!5@u~a!I 1S̄1h~ 1
2 !~R

1u~a!I !# i 21,t@S̄# i ,t@u~a!I # i 11,t

1@h~ 1
2 !u~a!I # i ,t@S̄# i 11,t@u~a!I # i 12,t

1@h~ 1
2 !~R1u~a!I !# i 22,t@S̄# i 21,t@u~a!I # i ,t
the
k-

e

,

a-

-

t

at

g

-

1@u~a!I # i ,t@S# i 11,t1@S# i 21,t@u~a!I # i ,t

1@R# i ,t@ I # i 11,t . ~6!

Equations~5! and ~6! can be used to compute the time ev
lution of the mobility of the system and the spatial averag
of the products of different combinations of the state va
ables defined on the same or neighboring sites.

The mobility B(t) at time t, i.e., the fraction of atoms in
the running state at timet, can be expressed in terms ofRi(t)
as

B~ t ![
1

N (
i

Ri~ t !5
1

r
^Ri~ t !&, ~7!

where^¯&[1/N( i(¯) is the spatial average of the qua
tity concerned over the system. It follows thatB(t11)
5(1/r)^Ri(t11)&. Making use of the expression forRi(t
11) in terms of quantities at timet given by Eq.~5!, the
mobility at time t11 can be expressed in terms of spat
averages involving strings of up to three neighboring site
time t. This gives

B~ t11!5@a^R0I & t1a2^I0I & t1^R00& t1a^I00& t1^R0R& t

1a^I0R& t#1
12a

2
@^R0I & t1a^I0I & t#

1
12a

2
^R0I & t1^RR& t . ~8!

For simplicity, we write the spatial averages at timet as
^¯& t and express the strings of neighboring sites in or
from left to right. We use the symbol ‘‘0’’ to denote a
empty site orS̄. For example,̂ R0I & t implies counting the
strings of neighboring sites with a running atom on the l
and an immobile atom on the right with an empty site
between over the system at timet. The prefactors resulted
from the fact that the spatial averages of the Boolean varia
u~a! ~or its conjugate! survive with a probabilitya ~or 1
2a). Similarly, h~1/2! survives with probability 1/2 unde
averaging. Thus, the terma^R0I & t comes from the averag
^R0u(a)I & t . Noting thatSi(t)1Si(t)5Ri(t)1I i(t)1Si(t)
51, we have

B~ t11!5
1

r F ^RR& t1^R0& t1a^I0& t2a
12a

2
^I0I & tG .

~9!

Equation~9! is an exact expression forB(t11) in terms of
quantities evaluated at timet. In order to proceed, we write
down the evolution equation for the spatial averages on
right-hand side of Eq.~9!. Obviously, iterating the equation
backward in time gives terms involving longer strings
neighboring sites and hence longer spatial correlations.
close the set of equations, a decoupling scheme retai
spatial averages involving two neighboring sites is invok
The set of equations can then be treated as a dynamical
tem. The fixed points of the equations then give the res
corresponding to the long time limit.

To treat the system analytically, we decouple the te
^I0I & t in Eq. ~9! into products of averages involving tw
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neighboring sites, i.e.,̂I0I & t'^I0& t^0I & t /(12r), where 1
2r5^0& t is the probability of finding an empty site@18#.
With this approximation, Eq.~9! becomes

B~ t11!5
1

r F ^RR& t1^R0& t1a^I0& t2a
12a

2

^I0& t^0I & t

12r G .
~10!

With the four variablesR, I, S, andS̄, a total of 16 two-site
spatial averages can be formed, among which four of th
can be chosen to be independent. We choose the indepe
spatial averages to bêRR& t , ^RI& t , ^IR& t , and^II & t . The
other two-site averages are related through

^R1& t5^RR& t1^RI& t ,

^1R& t5^RR& t1^IR& t ,

^I1& t5^IR& t1^II & t ,

^1I & t5^RI& t1^II & t ,

^R0& t5rB~ t !2^R1& t ,

^I0& t5r@12B~ t !#2^I1& t ,

^0R& t5rB~ t !2^1R& t ,

^0I & t5r@12B~ t !#2^1I & t ,

^01& t5r2^R1& t2^I1& t ,

^10& t5^01& t ,
m
ent

^00& t512r2^01& t ,

^11& t5^I1& t1^R1& t , ~11!

where ‘‘1’’ represents an occupied site regardless of
character of the atom. UsinĝRR& t115^Ri(t11)Ri 11(t
11)& and Eq.~5! for Ri(t11) andRi 11(t11), we have

^RR& t115^RRR& t1
12a

2
^RR0I & t1^R0RR& t1a^I0RR& t

1
12a

2
@^R0R0I & t1a^I0R0I & t #. ~12!

To make the approximation self-consistent, we invoke
decoupling scheme and retaining spatial averages involv
no more than two sites: we have

^RR& t115
^RR& t

2

rB~ t !
1

^RR& t

~12r!rB~ t !

3H 12a

2
^R0&^0I & t1^0R& t@^R0& t1a^I0& t#J

1
12a

2

^R0& t^0R& t^0I & t

~12r!2rB~ t !
@^R0& t1a^I0& t#.

~13!

Similarly, for ^RI& t11 , ^IR& t11 , and ^II & t11 , we obtain,
after decoupling,
^RI& t115
^RR& t^RI& t

rB~ t !
1

12a

12r
^0I & tF ^R0& t1

a

2
^I0& tG

1
1

12r
@^R0& t1a^I0& t#H ^0R& t^RI& t

rB~ t !
1

12a

12r
^00& t^0I & t1a

^0I & t^I1& t

r@12B~ t !#
1

a

2

12a

12r

^0I & t
2^I0& t

r@12B~ t !#J , ~14!

^IR& t115
1

rB~ t ! F ^RR& t1
12a

2~12r!
^R0& t^I0& tG H a^IR& t1~12a!

^1I & t^IR& t

r@12B~ t !#
1

12a

2~12r!

^0I & t^IR& t

r@12B~ t !#J , ~15!

^II & t115~12a!@^RI& t1a^II & t#1
a

2

12a

12r
^0I & t^I0& t1

a

rB~ t !
^RI& t^IR& t1~12a!2 ^1I & t^II & t

r@12B~ t !#
1aF ^RI& t^I1& t

r@12B~ t !#

1a
^II & t^I1& t

r@12B~ t !#G1
~12a!2

12r

^0I & t^1I & t^I0& t

r@12B~ t !#
1

12a

rB~ t !

^RI& t^1I & t^IR& t

r@12B~ t !#
1a~12a!

^1I & t^II & t^I1& t

r2@12B~ t !#2

1
a

2

12a

12r

^I0& t^0I & t

r2@12B~ t !#2 @^RI& t1a^II & t#1
~12a!2

2~12r!

^0I & t^II & t

r@12B~ t !#
@^R0& t1a^I0& t#1

1

2 S 12a

12r D 2 ^0I & t
2^I0& t

r@12B~ t !#

3@^R0& t1a^I0& t#1
a

2

~12a!2

12r

^0I & t^1I & t^II & t^I0& t

r2@12B~ t !#2 1
12a

2~12r!rB~ t !

^0I & t^IR& t^RI& t

r@12B~ t !#
@^R0& t1a^I0& t#

1
a

2

12a

12r

^I1& t^0I & t^II & t

r2@12B~ t !#2 @^R0& t1a^I0& t#1
a

4 S 12a

12r D 2 ^I0& t^0I & t
2^II & t

r2@12B~ t !#2 @^R0& t1a^I0& t#. ~16!
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Equations~10! and~13!–~16! form a set of five equations
for B, ^RR&, ^RI&, ^IR&, and^II &. These equations form a five
dimensional dynamical system. To compare with simulat
data, we solve for the stable fixed points numerically. Res
for the mobility are shown in Fig. 1 as solid lines for diffe
ent values ofa and r. The analytical results are in goo
agreement with numerical data, showing that the decoup
approximation is sufficient to capture the essential featu
of the model. We have also checked the results of the t
and three-site spatial averages numerically and analytic
and it is found that the decoupling scheme gives qualitativ
correct results for the spatial averages. Our method re
sents a systematic way of deriving mean field theories fr
microscopic consideration by following the time evolution
the system. The decoupling scheme of retaining two-site s
tial averages is the minimal procedure to obtain qualitativ
correct mobility and spatial averages involving longer strin
of sites@18#.

Thea51 case deserves further discussion. Fora51, Eq.
~9! gives

B~ t11!5
1

r
@^10& t1^RR& t#, ~17!

where ^10& t5^R0& t1^I0& t . The spatial averagêRR& t11
can be obtained by settinga51 in Eq. ~13! to get

^RR& t115
^10& t^0R& t^RR& t

~12r!rB~ t !
1

^RR& t
2

rB~ t !
. ~18!

To form a closed set of equations, we work out the spa
averageŝ 10& t11 and ^0R& t11 within the approximation of
retaining two-site correlations to get

^10& t5r2S 12
^10& t

r D S r2^10& t1
^10& t

2

12r D ~19!

and

^0R& t115^10& t1
^0R& t^RR& t

rB~ t !
2

^10& t^0R& t^RR& t

~12r!rB~ t !
,

~20!

where we have used the relations stated in Eq.~11!. The
fixed points satisfyB(t11)5B(t)[B, ^10& t115^10& t[y,
^RR& t115^RR& t[z, and ^0R& t115^0R& t[w. Hence they
satisfy the simultaneous equations

rB5y1z, ~21!

y5r2S 12
y

r D S r2y1
y2

12r D , ~22!
n
ts

g
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e-

a-
y
s

l

z5
z2

rB
1

wyz

~12r!rB
, ~23!

w5y1
wz

rB
2

wyz

~12r!rB
. ~24!

From Eq.~22!, the stable fixed point fory is given byy5r
for r,1/2 andy512r for r>1/2. From Eq.~23!, z50 is a
stable fixed point forr,1/2 andz5rB2w is a stable fixed
point for r>1/2, where we have used the results fory. It is
important to note that Eq.~24! for w becomes redundant
Hence the situation is that we have three equations with f
unknowns. The values ofB andz are governed by the linea
relation

z5rB2~12r!. ~25!

Any values ofBP@(12r)/r,1# andzP@0,2r21# satisfying
Eq. ~25! is a solution to the system of equations. Thus,
a51, the mobilityB51 for r,1/2 andB lies in the range
@(12r)/r,1# for r>1/2 with the precise value depending o
the initial condition, in agreement with numerical resul
The value (12r)/r shown in Fig. 1 corresponds to the in
tial condition of all the atoms being immobile.

B. Model B

The new parameterg introduced in rule B1 is the prob
ability that an atom in the running state changes into
immobile state in a time step. To carry out analytical tre
ments similar to those in model A, it is convenient to divid
each time interval into two halves. In the first half of a tim
step, rule B1 applies and the parameterg is effective, while
in the second half of the time step, rules A1 and A2 app
Introducing a Boolean variablez i ,t(g) analogous to, but sta
tistically independent of,u i ,t(a) andh i ,t , the variablesRi(t)
and I i(t) evolve in the first half of the time step as

Ri~ t1 1
2 !5z i ,t~g!Ri~ t ! ~26!

and

I i~ t1 1
2 !5I i~ t !1z i ,t~g!Ri~ t !. ~27!

The time evolution in the second half of the time step
given by Eqs.~5! and ~6!, with the quantities on the right
hand side of the equations corresponding to those evalu
at t11/2. Combining the evolution in the two halves of
time step, we finally arrive at
Ri~ t11!5$@z~g!1u~a!z~g!#R1u~a!I % i 21,t@S̄# i ,t@S̄1~z~g!1u~a!z~g!!R1u~a!I # i 11,t

1$h~ 1
2 !@z~g!1u~a!z~g!#R1h~ 1

2 !u~a!I % i 21,t@S̄# i ,t@u~a!z~g!R1u~a!I # i 11,t

1@h~ 1
2 !z~g!R# i ,t@S̄# i 11,t@u~a!z~g!R1u~a!I # i 12,t1@z~g!R# i ,t@z~g!R# i 11,t ~28!

and
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I i~ t11!5$S̄1@z~g!u~a!1h~ 1
2 !z~g!1h~ 1

2 !u~a!z~g!#R1@u~a!1h~ 1
2 !u~a!#I % i 21,t@S̄# i ,t@u~a!z~g!R1u~a!I # i 11,t

1@h~ 1
2 !u~a!z~g!R1h~ 1

2 !u~a!I # i ,t@S̄# i 11,t@u~a!z~g!R1u~a!I # i 12,t1$@h~ 1
2 !z~g!1h~ 1

2 !u~a!z~g!#R

1h~ 1
2 !u~a!I % i 22,t@S̄# i 21,t@u~a!z~g!R1u~a!I # i ,t1@u~a!z~g!R1u~a!I # i ,t@S# i 11,t

1@S# i 21,t@u~a!z~g!R1u~a!I # i ,t1@z~g!R# i ,t@z~g!R1I # i 11,t . ~29!
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Equations~28! and ~29! are the time evolution equation
relating Ri(t11) and I i(t11) to quantities at timet. They
play exactly the same role as Eqs.~5! and ~6! in model A.

It is then straightforward to carry out the same treatm
for model B as in model A, and we simply outline the ke
steps in the following discussion. Following the same st
leading to Eq.~9!, the mobility B(t11) at time t11 for
model B is given by

B~ t11!5
1

r H ~12g!2^RR& t1~12g1ag!^R0& t

1a^I0& t2
a

2
~12a!@^I0I & t1g~^R0I & t

1^I0R& t!1g2^R0R& t#J . ~30!

Equation~30! is the generalization of Eq.~9! to model B. It
reduces to Eq.~9! for g50. Employing a decoupling ap
proximation to retain only spatial averages involving up
two nearest-neighboring sites, Eq.~30! becomes

B~ t11!5
1

r H ~12g!2^RR& t1~12g1ag!^R0& t

1a^I0& t2
a

2

12a

12r
@^I0& t1g^R0& t#

3@^0I & t1g^0R& t#J . ~31!

To close the set of equations, we construct the time evolu
equations for the spatial averages^RR&, ^RI&, ^IR&, and ^II &.
The other spatial averages can be constructed from these
averages. In the presence of the parameterg, the resultant
equations are more complicated than Eqs.~13!–~16! in
model A. This set of equations forms a dynamical syste
The stable fixed point corresponding to the mobility and s
tial averages in the long-time limit can be readily solv
numerically. Results for the mobilityB in the steady state ar
shown as solid lines in Figs. 2 and 3 for two different valu
of atomic concentrationr. The theoretical results obtaine
within the decoupling approximation capture all the essen
features of the numerical data. It is observed that the th
retical results are consistently slightly greater than the
merical data. The discrepancies come from the decoup
scheme. If the decoupling approximation is extended to
tain spatial averages involving up to three neighboring si
for which the calculations are much more involved, the
sults are in better agreement with numerical data@19#. It is,
however, important to stress that the essential physics is
tured within the two-site decoupling approximation.
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The particular case ofa51 can be treated in a way analo
gous to that in model A. It is found that forgP(0,1#, the
stable attractors give the mobility

B~ t→`!5H 1 if r,1/2,
12r

r
if r>1/2,

~32!

together with the spatial averages

^10& t→`5^0R& t→`5 H r if r,1/2,
12r if r>1/2, ~33!

and

^RR& t→`50. ~34!

For a51 andgÞ0, the time evolution of the state at a si
depends on the states of the nearest-neighboring sites
and hence the decoupling scheme retaining only two-
spatial averages is good. Results so obtained are in e
agreement with numerical data. It should be noted that
g50 anda51, B51 for r,1/2 andB lies in the range
@(12r)/r,1# for r>1/2 with the precise value depending o
the initial condition as discussed in the previous subsect

IV. SUMMARY

In summary, we have proposed three CA models defi
in terms of parallel updating rules analogous to the th
models recently studied by Braunet al. @14# which are de-
fined in terms of sequentially updating rules. These mod
are of increasing complexity so as to model the generali
FK models proposed recently within the context of tribolog
The first model~model A! involves atoms in two different
dynamical states, i.e., running and immobile, subjected to
external field parametrized bya. Atoms in the running state
tend to hop along the field direction while atoms in the im
mobile state may bounce backward. The second mo
~model B! involves spontaneous transition of atoms from t
running state to the immobile state in addition to the rules
model A. The third model~model C! takes into account of
the crowding effect of the system as well. Results of nume
cal simulations indicate that the mobility, which is defined
the fraction of atoms in the running state, as a function oa
for the three models exhibit phase transitions, jammings,
hysteresis. This interesting feature of hysteresis in mode
can be understood qualitatively by noting the asymmetry
the formation of compact blocks of running atoms follow
by compact blocks of immobile atoms from different initi
configurations. The proposed CA models have the advan
that they can be treated as dynamical systems and anal
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by the microscopic approach previously applied to analog
models of traffic flow problems@17#. For models A and B in
which the state of a site is affected by the nearest and n
nearest neighbors, time evolution equations of the stat
the sites can be explicitly written down. The mobility of th
system at timet11 can be expressed in terms of spat
averages at timet involving not more than three sites. B
invoking an approximation which decouples the spatial
erages into products of spatial averages involving upto
neighboring sites as well as deriving the evolution equati
of the two-site spatial averages, a closed set of equat
forming a nonlinear dynamical mapping can be establish
The behavior in the long-time limit can be found by studyi
the stable fixed point of the mapping. The fixed point of t
mapping can be found numerically. In the special case
a51 andgÞ0, the decoupling scheme is exact and anal
cal solutions can be found. For the whole range of poss
values of the parameters in the models, the present appr
yields satisfactory results when compared with simulat
z
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data. Our analytical approach represents a systematic wa
derive approximations of increasing accuracy starting from
microscopic point of view by following the time evolution o
the system. It is expected that better agreement with num
cal results can be obtained by retaining spatial averages
volving a long string of neighboring sites.
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