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Three cellular automaton models of increasing complexity are introduced to model driven diffusive systems
related to the generalized Frenkel-Kontorg@#&) models recently proposed by Braahal.[Phys. Rev. E58,
1311(1998]. The models are defined in terms of parallel updating rules. Simulation results are presented for
these models. The features are qualitatively similar to those models defined previously in terms of sequentially
updating rules. Essential features of the FK model such as phase transitions, jamming due to atoms in the
immobile state, and hysteresis in the relationship between the fraction of atoms in the running state and the bias
field are captured. Formulating in terms of parallel updating rules has the advantage that the models can be
treated analytically by following the time evolution of the occupation on every site of the lattice. Results of this
analytical approach are given for the two simpler models. The steady state properties are found by studying the
stable fixed points of a closed set of dynamical equations obtained within the approximation of retaining spatial
correlations only up to two nearest-neighboring sites. Results are found to be in good agreement with numeri-
cal data[S1063-651X99)03807-9

PACS numbes): 05.70.Ln, 05.45-a, 66.30-h, 05.60-k

[. INTRODUCTION tice gas(LG) models of increasing complexitthenceforth
referred to as LG models A, B, and),Braunet al. intro-
The physics of driven diffusive systems has attractecduced probabilistic hoppings of atoms on a lattice together
much attention recently1,2] due to their relevance to the with the possibility of the atoms being found in one of two
general area of nonequilibrium statistical mechanics angbossible states. The underlying modeG model A in one
their wide range of possible potential applications. In par-dimension is thal atoms are placed in a lattice of lendth
ticular, the Frenkel-KontorovéFK) model[3,4] and its gen-  corresponding to a concentration @& N/L. The dynamics
eralizations[5—7] have been studied within the context of is introduced in a random and sequential fashion by ran-
tribophysics. Braun and co-worker8—10 studied the domly choosing a site at each time step and updating the
atomic current in one- and two-dimensional atomic systemsystem according to specific rules. The hopping to the
in the presence of a periodic potential under the influence ofearest-neighboring sites of an immobile atom in a randomly
a dc driving force within the approach of Langevin equa-chosen site is characterized by a probabilityl — ) that an
tion_s. In tribophysics, the driving force emerges owing to th_eatom hops into the site in the rigtieft) hand side. Thus the
motion of one of the two substrates separated by a thin, 2 metere models the effect of a driving force, and the

atomic layer. The results of these studies are characterized ppings to the right and left hand sides correspond to the

two features. One feature is that the system exhibits hyswre’ffects of drift together with diffusion. Atoms in the running

esis in response to the driving force. The system jumps be: . o
tween low-mobility and high-mobility regimes in a hysteretic state always attempt to hop to the right, which is taken to be

manner as a function of the driving force. Another feature isthe direction of the driving force. Ther=1/2 case corre-

that accompanying this transition, the atoms tend to organiz&P°"ds to vanishing bias field. The-=1 case corresponds to

themselves into two types of domains consisting of atoms ifh€ totally asymmetric exclusion model, which has been
states of different characters, one consisting of slowly movSolved exactly{15]. An atom in the immobile state changes

ing (“immobile” ) atoms and another consisting of “run- t0 the running state if it succeeds in hopping to the right hand
ning” atoms moving with maximum speed. The latter fea- Side, while a running atom becomes immobile if the site to
ture resembles those in traffic flow modfld—13 in which  the right is occupied by an atom in the immobile state. Such
cars may be moving at their maximum speed if they are notransitions between the immobile and running states of an
blocked or may be momentarily stationary if they areatom model the effects of damping. LG model A is thus
blocked in front. characterized by the parametgrsand a. LG model B in-
The models studied in Ref8—10Q] are quite complicated. cludes the possibility that the running atom at a randomly
Attempts have been madé4] to introduce simpler models chosen site may change to the immobile state with probabil-
which capture the essential features. In a series of three laity +y prior to the motion of the atom takes place. This spon-
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taneous convection from the running to the immobile state is 1.00

supposed to be more important for weak driving forces. In

order to capture the features of hysteresis, Braual. [14] /L

went on to include in the basic model a majority rule in the 0.80 ;-

conversion between the two states of the atoms. If the ran- ’

domly chosen site is occupied by the leading atom in a com-

pact group of running atoms and it is blocked by a compact

group ofs immobile atoms in front, all the +s atoms will M

turn into the immobilg(running state ifr <s (r=s). These

three models have the advantage of being easily imple-

mented numerically by carrying out Monte Carlo simula-

tions. 0.20 &
It is useful to study similar models within the context of

dynamical systems. A physical consideration is that parallel

updatings of the states of the atoms may be more appropriate 0.00 : , : :

than the sequential updatings in the LG models studied in 050 060 070 080 090 1.00

Ref.[14]. In the present work, we propose analogous models _ _ )

with parallel updating rules in that all the atoms evolve in. FIG. 1. The fr"’?Ct'_OrB of atoms in the running state for model A

every time step according to updating rules, and hence th'g the long-time I|m|; asdiffunctlon Iof thefdlrr]nensmnless gxternfal

models become cellular automatt®A). We performed nu- >2Sing parameter for different values of the concentration o

merical simulations on the models. Another advantage O?to_ms,_r). This dlmen5|onles§ quantity is referred to as Fhe mobility,

. . . . S it gives the number of sites hopped per atom per time step. The
casting the mOde!S In te”'?s of parallel updating rules is thai mbols are numerical data, and the solid lines are results obtained
a more systemat_lc analytlcgl approach, analogous to tho invoking the decoupling scheme in the analytical approach dis-
successfully applied to traffic flow modefl$6,17, may be  |ssed in the text.
applicable. Such an approach focuses on the time evolution
on the state of each of the sites, namely, whether the site is o ] o )
occupied by an atom in the running or immobile state or Rule Al.If the ith site on the lattice at timeis occupied
unoccupied. In general, spatial correlations of gradually inPy an immobile atom, it has a probability to be in the
creasing spatial extent are introduced as time evolves. Equadvancing immobile state, i.e., the state that favors forward
tions can be written down relating the state of a site at timéiasing and a probability + « to be in the retreating immo-
t+1 to quantities at timé. By suitably decoupling the spa- bile state, i.e., the state that favors backward hopping. An
tial correlations, a set of coupled nonlinear equations can badvancing immobile atom can either hop into #m@pty(i
obtained with the fixed point corresponding to the solution in+ 1)th siteand become a running atoifthe (i +2)th site is
the long-time limit. The complexity of the set of equations not occupied by a retreating atom or be blocked by an atom
depends on the extent of spatial correlations retained aftejccupying the i+ 1)th site without changing its state, while
decoupling. The approach has the advantage that it gives theretreating atom can either hop into #@pty(i — 1)th site
fraction of running atoms in the steady state together withyng stay in the immobile statié the (i—2)th site isnot
other spatial correlation functions. As an illustration of theoccupied by a running or an advancing immobile atom or be
general idea of the approach, we study models A and B withy;keq by an atom occupying thé<{1)th site without
parallel updating rules and results are found to be in reasor}:hanging its state.

able agreement with numerical simulations within the ap- Rule A2.If the ith site on the lattice at timeis occupied

proximation of retaining correlations up to two sites. Theby a running atom, it can move to tfmnpty(i +1)th site if

present work, therefore, complements that of Braatral. + 2)th site isnot ied b treat i ¢
[14] and suggests an alternative way of studying the variouéhe g . ) fl Site Isnotoccupied by a retreating atom or stay
at theith site and remain in the running state if it is blocked

models proposed within the context of tribology. : X ) o
The plan of the paper is as follows. In Sec. II, we definely @ running atom ochange to the immobile staieit is

the modified models with parallel updating rules and presen®locked by an immobile atom at the+ 1)th site.

the results obtained by numerical simulations. Section III Rule A3lf the ith site on the lattice at timeis empty and

reports results of our analytical calculations on models A ands sandwiched between a running or advancing immobile

B. Results are compared with numerical simulations. Weatom at the (— 1)th site and a retreating immobile atom at

0.60

0.40 ¢

summarize the results in Sec. IV. the (i + 1)th site, then the atoms at the two neighboring sites
are equally probable to hop into théh site according to
Il. MODELS AND NUMERICAL RESULTS rules A1 and A2. The atom that fails to hop at that time step

will remain in its original state.
Model A thus represents a modification of the LG model
We considerN atoms on a one-dimensional lattice lof A in Ref. [14] with parallel updating rules. The quantity of
sites with periodic boundary condition. Following the basicinterest is the fractio of atoms in the running state in the
lattice gas moddl14], we modify the rules such that parallel long-time limit. This dimensionless quantity also reflects the
updating is incorporated. The updating rules are the follownumber of sites hopped per atom per time step in the long
ing. time limit. Following Ref.[14], B is also referred to as the

A. Model A
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mobility. We have carried out numerical simulations on 1.00
model A. Figure 1 shows the dependence of the mobBity
as a function of the drift parameter for different concen- 0.90
trations of atoms. Note that only the range 1#2a¢<1 cor- /
responding to a biased field to the right hand side is shown, 0.80 r /.* p=04
although the range ©a<1/2 can also be studied taking ’
model A as a CA model in its own right. To illustrate the 070 ¢
basic features of the model, we have performed numerical M
simulations on systems with=1000. Typically, about 2000 0.60 }
time steps are sufficient for approaching the long-time limit. o’ A
The mobility B is obtained simply by counting the fraction of 0.50 | " el e
running atoms in the long-time limit. Fag<<1, an average S * y=0.4
[ : ; 0.40 [ oo Aanet - v=0.6
over 50 random initial configurations are performed. kor < 4=0.8
>1/2,B=1 for p<0.32. For 0.3% p<1/2, the mobilityB e
becomes unity at some critical valug(p). For p>1/2, the 030 560 oo " ome ome Too
concentration is sufficiently high so thB& 1 for all values o
of a. FIG. 2. The fractiorB of atoms in the running state for model B

The particular point oix=1 deserves further discussion. in the long-time limit as a function of the dimensionless biasing
It is found that forp>1/2, the mobilityB at«=1 inthe long  parametew for different values of the parameterat fixed concen-
time limit depends on the initial condition. The resultsaat ~tration p=0.4. The symbols are numerical results, and the solid
=1 shown in Fig. 1 correspond ®=(1—p)/p, which are lines are results obtained by invoking the decoupling scheme. Re-

obtained by using the initial configuration in which all the SUts are typical of those fgy<1/2.

atoms are immobile. For arbitrary initial configurations atvalues of 1/2@<1 and 0<y<1. The mobilities converge

a=1, B is found to lie within the range (%p)/p<B=<1. . ~

Similar results are obtained in our analytical approach dis:[0 the same value for different values pfat a_.l' For g
. . . ' 77=0, model B reduces to model A and the mobilByies in

cussed in the next section, by treating the model as a d

cal Yhe range (t p)/p<B=<1 with the precise value depending
namical system. on the initial condition.
B. Model B C. Model C
Model A forms the basic CA model for further modifica- Following the LG model C in Ref.14], further modifica-

tions. In particular, while an irreversible transition into the tjions can be made by taking into account the influence of the
running state for an isolated atom is strongly favorable in thesiate of the surrounding atoms on that of a single atom, i.e.,
high-field limit (a~1), it is possible for a running atom to the “crowding effect.” The modifications involve the con-
convert spontaneously to the immobile state in the weaksiderations of the jamming of a running block of atotns.,
field case. Following the LG model B in Réfl4], we intro-  a compact group of nearest-neighboring atoms in the running
duce the following rule in addition to the rules A1, A2, and statg by an immobile block of atom§.e., a compact group
A3 stated above:

Rule B1.Before the updating rules Al, A2, and A3 are
applied in each time step, every atom in the running state has 0.65 |
a probabilityy to change its state to the immobile state and a
probability 1— y to remain in the running state. After this

consideration, all the atoms on the lattice evolve according to 055 ¥
the rules A1, A2, and A3.
Rules B1, Al, A2, and A3 define the CA model B. While 0.45 |
« tends to lead to a larger fraction of running atom, the M
parametery counteracts the effect and tends to increase the 0.35

number of atoms in the immobile state. Hence the mobiity
is generally lower fory#0 cases than the=0 case for the L,
same value ofx. Figure 2 shows the values 8fas a func- 0.25 prireas”

tion of « for different values ofy with the concentration
fixed at p=0.4, which corresponds to a concentration at

which the atoms are isolated if they are uniformly distributed 018 0 om0 070 om0 oo Too
on the lattice. Note that the mobilities converge to unity at o
a=1 for different values ofy. Only wheny=0 will the FIG. 3. The fractiorB of atoms in the running state for model B

mobility becomes unity for,<a<1. The results shown are i the long-time limit as a function of the dimensionless biasing
typical for p<<1/2. Figure 3 shows the results fpr=0.6,  parameter for different values of the parameterat fixed concen-
which corresponds to a concentration at which there are atration p=0.6. The symbols are numerical results, and the solid
ways some atoms with nearest neighbors if they are unilines are results obtained by invoking the decoupling scheme. Re-
formly distributed on the lattice. In this casB<<1 for all sults are typical of those fgr>1/2.
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1.00 g x e > finding the configuration in which a compact blockrofun-
,-f"ﬂﬂ ning atoms is immediately followed by a compact blocksof
i - immobile atoms with an empty site at both ends. By defini-
0.80 [+ =04 - o ] tion the density of running atoms on the latticepB and the

R density of immobile atoms ip(1—B). The probability of
T P05 having a compact block afrunning atoms immediately fol-
e / lowed by a compact block o§ immobile atoms is thus

m 060 [pB(t)]'[p(1—B(t))]°, whereB(t) is the fraction of run-

e e

b’ e 0.6 ning atom at a particular instant. Therefore, the probability of
» e finding the desired configuration with an empty site at both
040 | v / ends isP=(1—p)2p"**B(t)"[1—B(t)]. We focus on the
et e p=0.7 upper branch of the hystersis obtained wheris lowered
Mﬁ” from a=1. In this case, the system evolves from an initial
0.20 . . . , configuration with B~1, which is attainableonly for p
050 060 070 080 090 100 =<1/2 ata=1. For values 0B close to unity, the probability
o

P is larger forr>s than forr<s. This asymmetry implies
that it is more probable to find blocks with more running
~ FIG. 4. The fractiorB of atoms in the running state for model C a1oms than immobile atoms. By rule C1, the asymptotic state
in the Iong-t|me_I|m|t as a function of the dlme_nsmnless blasmgWi” consist of more running atoms and hence a larger value
parametew for different V?'”es of the Conce.mrat"mThe param- ¢ g Therefore, the asymptotic values Bfare generally
itgf T—?ylsiet?ekseig itr? tﬁi i?obiﬁﬁjﬁglfbgsvgg I;ji fl(;;.those Witho larger if one starts with an initial configuration with a larger
number of running atoms. This sensitivity to the initial con-
figurations leads to the hysteresis observed in the fraction of

. . . . running atoms ag is gradually increased and decreased.
of atoms in the immobile stakelf these two adjacent blocks g g y

of atoms are sandwiched between two empty sites at the two
ends, the state ddll the atoms will then follow that of the
larger block. This rule will be referred to as the majority rule.  The CA models with parallel updating rules have the ad-
Furthermore, since the spontaneous transition of atoms in theantage that they can be treated analytically within the con-
running state to the immobile state should be suppressed hgxt of dynamical systems. The general idea is to establish
an increasingly stronger forward bias, the parametgould  the time evolution equations for the state on each site of the
be a dependent. We impose the relati¢hd] y= yy(1 lattice. The equations, in general, involve spatial correlation
—a)? on the parametey, where y, is a model parameter. functions. With suitable approximations typically involving
Hence the updating rules for model C can be stated explicithproper decoupling of the correlations, a closed set of dy-
as below. namical equations can be obtained. Such a set of equations
Rule C1.At a certain time step, if thei - r +1)th site to  can be treated as a dynamical mapping between quantities at
the ith site isall occupied by running atoms and the ( time t+1 and those at timé. Hence, following standard
+ 1)th site to the i+ s)th site isall occupied by immobile approaches in dynamical systems, the solution in the long-
atoms together with the condition that thie(r)th site and  time limit can be found by studying the fixed poiritstrac-
(i+s+1)th site be empty, then in the caserefs (r<s),  tors) of the set of equations. Such an approach has been
all ther +s atoms become runningmmobile). Immediately  successfully developed for traffic flow modél$6,17 in
after the changes, the states of the sites are then updat@ghich the cars, which are analogous to the atoms in the
according to the rules of model B with= Yo(1-a)?. present models, can only move in one direction without
_Rule C1 together with model B define the CA model C.,5ckward diffusion movements. To illustrate the idea, we
Figure 4 shows typical results for the mobilig/as a func- 55 the approach to study the modified CA models. It turns
tion of « for different values ofp with y, taking on a vaI}Je out that for models A and B, reasonably good agreement
Qith numerical simulations can be obtained by retaining spa-
tial correlations involving two neighboring sites only. Appli-
cation of the method to model C is difficult due to the
built-in long spatial correlations in the majority rule of the
%odel, and hence results are only reported for models A and

Ill. ANALYTICAL APPROACH

that of model A except for the presencehyfsteresisa char-
acteristic feature of the FK modgl4], for p<1/2. The val-
ues ofB obtained by gradually increasingfrom «=0.5 to
a=1 are generally smaller than those obtained by graduall
decreasingr from a=1, and the difference between the mo-
bilities for increasing and decreasing bias fields at a particu-"
lar value of« increases withy as observed in the LG model

in Ref.[14].

The hysteresis, which is absent from models A and B,
observed folp<1/2 in model C originates from the interac-  Although one can treat model B directly and obtain re-
tions between compact blocks of running atoms and those afults of model A by setting/=0, it is, however, illustrative
the immobile atoms. To understand qualitatively the originto treat the simpler model A first. We denote the states of the
of such irreversible behavior, we consider the probability ofith site at timet by the following set of Boolean variables:

A. Model A
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R(t)= 1 if the i th site at timet is occupied by a running atom, L
(D=1 otherwise, @
L ()= 1 if the i th site at timet is occupied by an immobile atom, 2
(0= otherwise, @

1 if the i th site at timet is occupied,
SMO=RO+LMO=15  henwise. )

Obviously, these variables satisfy the relationshipsin the last set of brackets is equivalent to saying that the (

Ri(ORi(H=Ri()S(t)=Ri(t), Li(®)Li(t)=1(t)S(t)=1i(t),  +1)th site is not occupied by a retreating immobile atom at

S(1)Si(H)=Si(t), Ri(HRi(t)=1;(t)1i(t)=0, andRi(t)I;(t)  timet.

=Ri()Si(t)=1;(t)S(t)=0. HereR;(t) represents the con- The second contribution t&;(t+1) comes from the situ-

jugate toR;(t) given byR;(t)=1—R;(t), with similar defi-  ation in which the {+1)th siteis occupied by a retreating

nitions for S;(t) andl;(t). immobile atom. In this case, rule A3 leads to another proba-

In order to represent whether an immobile atom is adJpilistic event. This situation contributes a termRg{t+ 1) of

vancing or retreatingat a certain time step, twe define a  the form

Boolean variablg); () at theith site at timet such that N —
7i-14(3)[Ri—1() + 014 (a) i _ 1 (D ][S(V)]

Gf)=| g ol PTOPIY I - @ X0 1) 1(D)],
: with probability (1—f).
which denotes the probability that the atom at the {)th

Thus the termd; (e)1;(t) represents the probability that the Sit€ Succeeded i_n moving forwar.d into the em';lltysite and

ith site at timet is occupied by an advancing immobile atom, became a running atom. The first factgr,,(z) follows
while the termé; () 1;(t) represents the probability that the from rule A3 as the atoms at the< 1)th and (+1)th sites

ith site at timet is occupied by a retreating atom. Here are equally probable to hop into tht site.

6, (a) denotes the conjugate df; (a), i.e., 6 (a)=1 Another contribution comes in when thth site is occu-
_’ai't(a)_ It follows that 0i,t(aj ei,t(a)zai,t(’a') and Pied by a running atom, thei € 1)th site is empty, thei(

6i «(a) 6; () =0. Similarly, in order to represent whether an +2)th site Is o_ccupled by a retreating |mm.ob|le atand
advancing or an immobile atom can hop into the empty sitdhat the retreating atom succeeded in hopping back onto the

sandwiched between the two atoms at a certain time stefy, ¥ 1)th site in the process. In this situation, the running
another Boolean variable, () defined exactly the same as (oM Will stay on theith site at the next time step. This
6, (f) is introduced withf=1/2. With this, the factor CONtributes a term.

(2R (1) S L 1(D] 654 2:(@)1i4o(1)] represents, for ex-
;]rlf;éle, 1hcla( p)riib;l()il)ity Ithzitt(thza Iadz\sa)ncingprunning atom at the 7 (DIRDIS 121D 6i 24 @)1 2(1)]
ith site can hop successfully into thet(1)th site at timet.
Note that the two Boolean variablés(f) and »; ((f) are
statistically uncorrelated.

We study the time evolution of the variabl&s(t) and
[;(1), i.e., we seek the variabld(t+1) andl;(t+1) as a
function of quantities at timé Focusing orR;(t+1), there
are various ways in which the situation at tinheaffects Ri(DR; 4 1(1)
Ri(t+1). From the rules Al and A2, a running or an ad- DR
vancing immobile atom occupying the- 1)th site at timet to R;(t+1) according to rule A2.

to Ri(t+1), with the brackets expressing the conditions at
theith, (i+1)th, and {+1)th sites. A fourth contribution
comes from the situation that a running atom atitiesite is
blocked by another running atom at thiet(1)th site and it
gives a term

will hop into the emptyith site if the (+1)th site is not Collecting all four contributions t&;(t+ 1), we have

occupied by a retreating immobile atom. At the next time o .

step, the (— 1)th site will become empty, while thi¢h site Ri(t+1)=[R+ 6(a)l ]i_1[ Sl L ()l + S+ R]j 114

will be occupied by a running atom. This leads to a contri- .

bution toR;(t+1) of the form +[7(3)(R+0(e)) i -1, Shi L O )1 T4 1
__ TR IS8

[Ri-1()+ 1) (OISO b1 (@) (D) LRSIl 0@ iz,
+Si+1(t)+Ri+l(t)]- +[R]i,t[R]i+1,ta (5)

which is a time evolution equation f&t;(t+ 1) in that all the
The three brackets express the conditions on thel(th,  quantities on the right-hand side are evaluated at tiote
ith, and {+ 1)th sites at time, respectively. The three terms that we have simplified the notations so that all the quantities



154 B. H. WANG, Y. R. KWONG, P. M. HUI, AND BAMBI HU PRE 60

inside a set of squared brackets are to be evaluated at the 70T ST +TS] - [6(a)l]:
position and time indicated as subscripts outside the brack- LO(@ i Sl {5l 6@ i
ets. +[RIi it s (6)

A similar argument can be carried out fo(t+1), al- . .
though the analysis is slightly more complicated than the=quations(5) and(6) can be used to compute the time evo-

case ofR;(t+1). Rule Al states that if the - 1)th site is lution of the mobility of the system and the spatial averages
not occupied by a running or an advancing immobile atom©f the products of different combinations of the state vari-
then the retreating immobile atom at thieH(1)th site can aPles defined on the same or neighboring sites.

hop into the emptyth site deterministically. This contributes 1€ mobility B(t) at timet, i.e., the fraction of atoms in
to I;(t+1) a term of the form the running state at tine can be expressed in termsRi{(t)

as
[6i-1(D1i- (D +S_1(DIS O[04 1(e)i 1 (D],

where the terms in the first set of squared brackets is equiva-
lent to saying that thei{1)th site is not occupied by a
running or an advancing immobile atom. where(---y=1/NZ,(--+) is the spatial average of the quan-
Rule A3 comes into consideration through various situatity concerned over the system. It follows thBi(t+1)
tions. If the (—1)th siteis occupied by a running or an =(1/p){R;(t+1)). Making use of the expression f&;(t
advancing immobile atom, the retreating immobile atom at+1) in terms of quantities at time given by Eq.(5), the
the (i + 1)th site still has half a chance to hop into the emptymobility at timet+1 can be expressed in terms of spatial
ith site and contributes a term averages involving strings of up to three neighboring sites at
time t. This gives

B(t)Eiz Ri(t):E<Ri(t)>r (7)
N 5 p

71 HIR () + 61 (a)l, 1 (DIS(D)]
><[6’i+1,t(a)|i+1(t)]

to I;(t+1). Note that when aradvancingimmobile atom
fails to hop forward, it will stay at the site and remain im-
mol_oile. I_n this case, an a_dvancing immqbile atom Iocgted at + 1- a<R0|>t+<RR>t- (8)
theith site at timet will still be there at timet+1 contrib- 2

uting a term tol;(t+1) of the form

B(t+1)=[ a(ROI )+ a?(10I);+(R00);+ a(100);+ (ROR),

1-«a
+ a(I0R) ]+ T[(ROI)ﬁ- a(l0l)]

For simplicity, we write the spatial averages at timas
(Lye. 1 (t 016 L1, (--*)¢ and express the strings of neighboring sites in order
[7.(3) 6 L )L IS 2D B2 @) i2(D)] from left to right. We use the symbol 0" to denote an
An analogous situation arises when the running or advancingmpty site orS. For example{ROI), implies counting the
immobile atom located at the £ 2)th site succeeded in hop- strings of neighboring sites with a running atom on the left
ping into the emptyi(—1)th site, leaving a retreating immo- and an immobile atom on the right with an empty site in
bile atom at theth site. This contributes a term tg(t+1)  between over the system at timeThe prefactors resulted

as from the fact that the spatial averages of the Boolean variable
&) (or its conjugatg survive with a probabilitye (or 1
Ni—2d(3)[Ri—2() + 6 o)l (1) ][S - 1(D)] —a). Similarly, 7(1/2) survives with probability 1/2 under
- averaging. Thus, the term(RO0I); comes from the average
X[ ()i ()] (ROA(a)l),. Noting thatS;(t)+Si(t)=R;(t)+1;(t) + S(t)
Blocking by atoms in the nearest-neighboring sites con—_l’ we have
tributes the following terms. If an advancing immobile atom 1 1—a
at theith site is blocked by the an atom at the+(1)th site or B(t+1)=—|(RR)+(R0);+ a(10),— aT<I 0l), /.
a retreating immobile atom is blocked by an atom at the ( p 9)

—1)th site, the state of thi¢h site at timet + 1 remains to be

immobile. These two terms ih(t+1) are represented by Equation(9) is an exact expression f@&(t+ 1) in terms of

[6; ()i (1)]S 41 (1) +S_1(1)[ 6 () I;(t)]. Finally, ac- quantities evaluated at tinte In order to proceed, we write
cording to rule A2, a ternR;(t)l;,(t) in I;(t+1) arises down the evolution equation for the spatial averages on the
from the blocking of a running atom by an immobile atom. right-hand side of E¢(9). Obviously, iterating the equations

Collecting all the contributions to(t+1), we have backward in time gives terms involving longer strings of
L neighboring sites and hence longer spatial correlations. To
li(t+1)=[6(a)l +S+ 7(3)(R close the set of equations, a decoupling scheme retaining
o spatial averages involving two neighboring sites is invoked.
+0(a))]i— 1 [SliL 0(a) Tir 1y The set of equations can then be treated as a dynamical sys-
. _ tem. The fixed points of the equations then give the results
+[7(3)0() i ([ Sli+ 1L OCa) Ti 4 24 corresponding to the long time limit.

o To treat the system analytically, we decouple the term
+[7(3)(R+ O(a)) Ti— o[ Sli— 14 O(a)1]; ¢ (101); in Eq. (9) into products of averages involving two
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neighboring sites, i.e{10I);~(10)(0l),/(1—p), where 1
—p={(0), is the probability of finding an empty site8].
With this approximation, Eq(9) becomes

1 1—a (10)(0l),
B(t+1)= | (RR)+(RO)+ a1 0)— o —— = — }

(10

With the four variableR, I, S andg, a total of 16 two-site

spatial averages can be formed, among which four of the
can be chosen to be independent. We choose the independ

spatial averages to B&RR),, (R1),, (IR);, and(ll),. The
other two-site averages are related through

(R1);=(RR)+(RI),
(1R)=(RR)+(IR),
(1) =(IRY+ (Il ),
(L) =(RIy+ (11},
(RO)=pB(t)—(R1)y,
(10)=p[1-B(1)]=(I1),
(OR)=pB(t) = (1R)y,
(0)=p[1-B(t)] (1),
(0D)=p—(R1)i=(I1),
(10),=(01),,

(RR(RI); 1-a
<R|>t+1: pB(1)

(OR)(RI); 1
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(00);=1—-p—(01),,
(1D)=(11)+(R1), (11

where “1” represents an occupied site regardless of the
character of the atom. UsingRR);=(Ri(t+1)R;(t
+1)) and Eq.(5) for Ri(t+1) andR;,(t+1), we have

&F%R%H:(RRF%JF 1_Ta<RR0|>t+<R0RR>t+ a(10RR),

+1_Ta[(ROROI>t+a(IOROI>t]. (12

To make the approximation self-consistent, we invoke the
decoupling scheme and retaining spatial averages involving
no more than two sites: we have

_(RRY  (RR)
(RRu1= B0 1= B

% 1_Ta<R°><°'>t+<0R>t[<R0>t+a<|o>t]

1-a <R0>t<0R>t<O|>t[
2 (1-p)%B()

(RO){+ a(10)].
(13

Similarly, for (Rl);,1, ({IR){+1, and (l1),,,, we obtain,
after decoupling,

1
+E[(R0>t+ a(lO)t][ pB(t) + 1

1 -«
(R =g (R 5 (RO)(O)

(1D1= (L= @RI afll) ]+ 5 T (0110} o (RIIR),

o (1) al-a <0|>t2<|0>t]
(000Dt a Rt 5 T st (M
~ (I)(IR) | 1-a <0|>t<|R>t]
[a(lR)ﬁ—(l a) p[l_B(t)]+2(1—p) p[1-B(1)]]’ 19

PR CONIY

(RI(I1),
p[1-B(1)] ”{

p[1-B(1)]

(NI ] (1= a)? (01110}, 1—a (RIN(1)(IR), (L(I)(11),
Yp[1-B(MI| 1-p p[1-B(O]  pBH) p[1-B(D)] Y 1-BOP
al—a (10){0l), (1—a)? (01)(I), 1

2 1-p pi-smp RV et 5= sr—Bm)]

a (1= a) (01)(11)(11)(10),

1—a)2 (0){(10),
p[1-B(1)]

[RO)+a(10)]+ 5 7=

1—a  (0D(IR)(RD:

XU(RO)+a(10) ]+ 5 ——

1- 121){01) (Il
31, <p2[>;<_ g;iﬂ?[mo»maoxw Z

pT1-B(D)]?

[(RO}+ a(10)]

2(1=p)pB(t) p[1-B(1)]

all-a 2<|0>t<0|>t2<”>t
1—p)

pZ[l_B(t)]Z [<R0>t+a<|0>t] (16)
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Equationg(10) and(13)—(16) form a set of five equations 72 wyz
for B, (RR), (RI), {IR), and(Il). These equations form a five- z=_—o+ (1=p)pB’ (23
dimensional dynamical system. To compare with simulation P PP
data, we solve for the stable fixed points numerically. Results
for the mobility are shown in Fig. 1 as solid lines for differ- W=y wz  wyZz (24)
ent values ofa and p. The analytical results are in good y pB (1-p)pB’

agreement with numerical data, showing that the decoupling

approximation is sufficient to capture the essential featuregrom Eq.(22), the stable fixed point foy is given byy=p

of the model. We have also checked the results of the twogg, p<1/2 andy=1—p for p=1/2. From Eq(23), z=0 is a

and three-site spatial averages numerically and analyticallygigple fixed point fop< 1/2 andz=pB—w is a stable fixed
and it is found that the decoupling scheme gives qualitativel)boint for p=1/2, where we have used the results yoit is
correct results fo.r the spatial averages. Qur metho_d réprémportant to note that Eq24) for w becomes redundant.
sents a systematic way of deriving mean field theories fromyence the situation is that we have three equations with four

microscopic consideration by following the time evolution of |,nknowns. The values & andz are governed by the linear
the system. The decoupling scheme of retaining two-site spgg|ation

tial averages is the minimal procedure to obtain qualitatively
correct mobility and spatial averages involving longer strings z=pB—(1—p). (25
of sites[18].
Thea= 1 case deserves further discussion. &erl, Eq.  Any values ofB e[(1—p)/p,1] andze[0,2p— 1] satisfying
(9) gives Eq. (25 is a solution to the system of equations. Thus, for
1 a=1, the mobilityB=1 for p<1/2 andB lies in the range
B(t+1)= ;[<10>t+<RR>t]v (A7) [(1-p)Ip.1] for p=1/2 with the precise value depending on
the initial condition, in agreement with numerical results.
where (10),=(R0);+(10),. The spatial averagéRR);,;  The value (X p)/p shown in Fig. 1 corresponds to the ini-
can be obtained by setting=1 in Eq.(13) to get tial condition of all the atoms being immobile.

_(10(OR)(RR);  (RR)?

(RR)+1= + :
1-p)pB(t B(t
(1=p)pB(L) PB(Y The new parametey introduced in rule B1 is the prob-

To form a closed set of equations, we work out the spatiafbility that an atom in the running state changes into the

averageg 10);,, and(OR),,, within the approximation of immobile state in a time step. To carry out analytical treat-
retaining two-site correlations to get ments similar to those in model A, it is convenient to divide
each time interval into two halves. In the first half of a time

(18 B. Model B

(10), (102 step, rule B1 applies and the parametss effective, while
(10)=p— ( 1- )(P_<1O>t+ E) (19 in the second half of the time step, rules Al and A2 apply.
Introducing a Boolean variablg .(y) analogous to, but sta-
and tistically independent ofg; («) and; ., the variablesR;(t)
OR).({RR 10).{0OR).{RR andl,(t) evolve in the first half of the time step as
(OR) = (10y,+ ORURRL_ (1O(ORNRR,
PRIV meeB Ri(t+3) =G (nRi() (26)

where we have used the relations stated in @4). The and
fixed points satisfyB(t+1)=B(t)=B, (10);,,=(10);=Y,
(RR)+1=(RR)=2, and(OR)tH:(OR()tE)W. H(<anc>e they Li(t+2) =L+ G (MR, (27)
satisfy the simultaneous equations
The time evolution in the second half of the time step is
pB=y+z, (21)  given by Egs.(5) and(6), with the quantities on the right-
hand side of the equations corresponding to those evaluated
2 .. . .
—p— 1= p—y+ - 22) at t+1/2. Com_bmlng th.e evolution in the two halves of a
y=r p p 1-p)’ time step, we finally arrive at

Ri(t+1)={[Z(7)+ 8(a) {(Y) IR+ 0(a)l}_1,[ Sl LS+ (L(y)+ 0(a) {(7)R+ () T+ 14

BN+ 0 Ly IR+ (3 8} 1 [ STl 0(@) L(Y)R+ 6(a)1 T+ 1

+ () LMRY LSl 1 0@ (PR (@) i 20+ [L(VRY L L(Y)R]; 5 1 (29)

and
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L(t+1)={S+[L(y) 0(a)+ p()L(y)+ 7(2) 8(a){(y)IR+[6(a)+ n(3) ()11} - 1 [Shi L 0(2) {(y)R+ 6(a) ]; ;1

+[ () 0() L(VR+7(3)0(a)1 T [ ST+ 1L 0(@) L()R+ () T4 o H{I 23 L) + 7(3) 8(@) L(7)IR
+9(3) 6} o[ S]i- 1 0(@) L(y)R+ B(a)l i +[6(@) L(y)R+ ()l T [S]; 1 14
+[Sli_ 1L 0(@) L(y)R+ 0(a)l T+ [L(PRLLL(Y)R+1 T+ 1 - (29

Equations(28) and (29) are the time evolution equations  The particular case af=1 can be treated in a way analo-
relating Rj(t+1) andl;(t+1) to quantities at timé. They  gous to that in model A. It is found that foye (0,1], the

play exactly the same role as EdS) and(6) in model A. stable attractors give the mobility
It is then straightforward to carry out the same treatment
for model B as in model A, and we simply outline the key 1 if p<1/2,
steps in the following discussion. Following the same steps B(t—x)={1-p . (32
leading to Eq.(9), the mobility B(t+1) at timet+1 for p if p=1/2,

model B is given by
1 together with the spatial averages
B(t+1)=_1 (1= )ARR+ (1= y+ay)(RO) b if p<1/2,
a (10e==OR)x={1 - if p=12, 33
+a<|0>t_E(l_a)[<|0|>t+7(<R0|>t
and

+(10R),) + yAROR),] ;. (30) (RR)..=0. (34)
For a=1 andy#0, the time evolution of the state at a site
Equation(30) is the generalization of Eq9) to model B. It depends on the states of the nearest-neighboring sites only

reduces to Eq(9) for y=0. Employing a decoupling ap- and hence the decoupling scheme retaining only two-site
proximation to retain only spatial averages involving up tospatial averages is good. Results so obtained are in exact

two nearest-neighboring sites, E§0) becomes agreement with numerical data. It should be noted that for
1 v=0 anda=1, B=1 for p<1/2 andB lies in the range
B(t+1)==1(1— WARR+(1— v+ RO [(1f;_))_/p,1] fo_r_p> 1/2 with the pr_ecise value_ depending on
( ) p{( PARRH (1= y+ay) (RO the initial condition as discussed in the previous subsection.

o —
+a(l0)— 5 E[(' 0)¢+ ¥(R0){] IV. SUMMARY

In summary, we have proposed three CA models defined
X[{01)+ 7<0R>t]]- (3D in terms of parallel updating rules analogous to the three
models recently studied by Brawet al. [14] which are de-
To close the set of equations, we construct the time evolutiofined in terms of sequentially updating rules. These models
equations for the spatial averagé®R, (RI), (IR), and(ll).  are of increasing complexity so as to model the generalized
The other spatial averages can be constructed from these foBEK models proposed recently within the context of tribology.
averages. In the presence of the parametethe resultant The first model(model A involves atoms in two different
equations are more complicated than E@53)—(16) in dynamical states, i.e., running and immobile, subjected to an
model A. This set of equations forms a dynamical systemexternal field parametrized hy. Atoms in the running state
The stable fixed point corresponding to the mobility and spatend to hop along the field direction while atoms in the im-
tial averages in the long-time limit can be readily solvedmobile state may bounce backward. The second model
numerically. Results for the mobilit in the steady state are (model B involves spontaneous transition of atoms from the
shown as solid lines in Figs. 2 and 3 for two different valuesrunning state to the immobile state in addition to the rules of
of atomic concentratiop. The theoretical results obtained model A. The third mode(model Q takes into account of
within the decoupling approximation capture all the essentiathe crowding effect of the system as well. Results of numeri-
features of the numerical data. It is observed that the theczal simulations indicate that the mobility, which is defined as
retical results are consistently slightly greater than the nuthe fraction of atoms in the running state, as a functiom of
merical data. The discrepancies come from the decouplinépr the three models exhibit phase transitions, jammings, and
scheme. If the decoupling approximation is extended to rehysteresis. This interesting feature of hysteresis in model C
tain spatial averages involving up to three neighboring sitesgan be understood qualitatively by noting the asymmetry in
for which the calculations are much more involved, the re-the formation of compact blocks of running atoms followed
sults are in better agreement with numerical da@. It is, by compact blocks of immobile atoms from different initial
however, important to stress that the essential physics is capenfigurations. The proposed CA models have the advantage
tured within the two-site decoupling approximation. that they can be treated as dynamical systems and analyzed
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by the microscopic approach previously applied to analogoudata. Our analytical approach represents a systematic way to
models of traffic flow problemgl7]. For models A and B in  derive approximations of increasing accuracy starting from a
which the state of a site is affected by the nearest and nexticroscopic point of view by following the time evolution of
nearest neighbors, time evolution equations of the state dhe system. It is expected that better agreement with numeri-
the sites can be explicitly written down. The mobility of the cal results can be obtained by retaining spatial averages in-
system at timet+1 can be expressed in terms of spatialvolving a long string of neighboring sites.

averages at timeé involving not more than three sites. By
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